Group Representation - Reducibility

Reducibility

A subspace W of V that is invariant under the group action is called a subrepresentation. If V has exactly two subrepresentations, namely the zero-dimensional subspace and V itself, then the representation is said to be irreducible; if it has a proper subrepresentation of nonzero dimension, the representation is said to be reducible. The representation of dimension zero is considered to be neither reducible nor irreducible, just like the number 1 is considered to be neither composite nor prime.

Under the assumption that the characteristic of the field K does not divide the size of the group, representations of finite groups can be decomposed into a direct sum of irreducible subrepresentations (see Maschke's theorem). This holds in particular for any representation of a finite group over the complex numbers, since the characteristic of the complex numbers is zero, which never divides the size of a group.

In the example above, the first two representations given are both decomposable into two 1-dimensional subrepresentations (given by span{(1,0)} and span{(0,1)}), while the third representation is irreducible.

Read more about this topic:  Group Representation