The Group C*-algebra C*(G)
Let C be the group ring of a discrete group G.
For a locally compact group G, the group C*-algebra C*(G) of G is defined to be the C*-enveloping algebra of L1(G), i.e. the completion of Cc(G) with respect to the largest C*-norm:
where π ranges over all non-degenerate *-representations of Cc(G) on Hilbert spaces. When G is discrete, it follows from the triangle inequality that, for any such π, π(f) ≤ ||f||1. So the norm is well-defined.
It follows from the definition that C*(G) has the following universal property: any *-homomorphism from C to some B (the C*-algebra of bounded operators on some Hilbert space ) factors through the inclusion map C C*max(G).
Read more about this topic: Group Algebra
Famous quotes containing the word group:
“Now, honestly: if a large group of ... demonstrators blocked the entrances to St. Patricks Cathedral every Sunday for years, making it impossible for worshipers to get inside the church without someone escorting them through screaming crowds, wouldnt some judge rule that those protesters could keep protesting, but behind police lines and out of the doorways?”
—Anna Quindlen (b. 1953)