Approximate Identity

An approximate identity is a right approximate identity which is also a left approximate identity.

For C*-algebras, a right (or left) approximate identity is the same as an approximate identity. Every C*-algebra has an approximate identity of positive elements of norm ≤ 1; indeed, the net of all positive elements of norm ≤ 1; in A with its natural order always suffices. This is called the canonical approximate identity of a C*-algebra. Approximate identities of C*-algebras are not unique. For example, for compact operators acting on a Hilbert space, the net consisting of finite rank projections would be another approximate identity.

An approximate identity in a convolution algebra plays the same role as a sequence of function approximations to the Dirac delta function (which is the identity element for convolution). For example the Fejér kernels of Fourier series theory give rise to an approximate identity.

Read more about Approximate Identity:  Ring Theory

Famous quotes containing the words approximate and/or identity:

    All fashions are charming, or rather relatively charming, each one being a new striving, more or less well conceived, after beauty, an approximate statement of an ideal, the desire for which constantly teases the unsatisfied human mind.
    Charles Baudelaire (1821–1867)

    Though your views are in straight antagonism to theirs, assume an identity of sentiment, assume that you are saying precisely that which all think, and in the flow of wit and love roll out your paradoxes in solid column, with not the infirmity of a doubt.
    Ralph Waldo Emerson (1803–1882)