Direct Sum - Internal Direct Sum

An internal direct sum is simply a direct sum of subobjects of an object.

For example, the real vector space R2 = {(x, y) : x, yR} is the direct sum of the x-axis {(x, 0) : xR} and the y-axis {(0, y) : yR}, and the sum of (x, 0) and (0, y) is the "internal" sum in the vector space R2; thus, this is an internal direct sum. More generally, given a vector space V and two subspaces U and W, V is the (internal) direct sum UW if

  1. U + W = {u + w : uU, wW} = V, and
  2. if u + w = 0 with uU and wW, then u = w = 0.

In other words, every element of V can be written uniquely as the sum of an element in U with an element of W

Another case is that of abelian groups. For example, the Klein four-group V = {e, a, b, ab} is the (internal) direct sum of the cyclic subgroups <a> and <b>.

By contrast, a direct sum of two objects which are not subobjects of a common object is an external direct sum. Note however that "external direct sum" is also used to refer to an infinite direct sum of groups, to contrast with the (larger) direct product.

Read more about this topic:  Direct Sum

Famous quotes containing the words internal, direct and/or sum:

    The analogy between the mind and a computer fails for many reasons. The brain is constructed by principles that assure diversity and degeneracy. Unlike a computer, it has no replicative memory. It is historical and value driven. It forms categories by internal criteria and by constraints acting at many scales, not by means of a syntactically constructed program. The world with which the brain interacts is not unequivocally made up of classical categories.
    Gerald M. Edelman (b. 1928)

    One merit in Carlyle, let the subject be what it may, is the freedom of prospect he allows, the entire absence of cant and dogma. He removes many cartloads of rubbish, and leaves open a broad highway. His writings are all unfenced on the side of the future and the possible. Though he does but inadvertently direct our eyes to the open heavens, nevertheless he lets us wander broadly underneath, and shows them to us reflected in innumerable pools and lakes.
    Henry David Thoreau (1817–1862)

    The real risks for any artist are taken ... in pushing the work to the limits of what is possible, in the attempt to increase the sum of what it is possible to think. Books become good when they go to this edge and risk falling over it—when they endanger the artist by reason of what he has, or has not, artistically dared.
    Salman Rushdie (b. 1947)