Normal Subgroup

In abstract algebra, a normal subgroup is a subgroup which is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup H of a group G is normal in G if and only if aH = Ha for all a in G (see coset). Normal subgroups (and only normal subgroups) can be used to construct quotient groups from a given group.

Évariste Galois was the first to realize the importance of the existence of normal subgroups.

Read more about Normal Subgroup:  Definitions, Examples, Properties, Normal Subgroups and Homomorphisms

Famous quotes containing the word normal:

    Like sleep disturbances, some worries at separation can be expected in the second year. If you accept this, then you will avoid reacting to this anxiety as if it’s your fault. A mother who feels guilty will appear anxious to the child, as if to affirm the child’s anxiety. By contrast, a parent who understands that separation anxiety is normal is more likely to react in a way that soothes and reassures the child.
    Cathy Rindner Tempelsman (20th century)