Normal Subgroup

In abstract algebra, a normal subgroup is a subgroup which is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup H of a group G is normal in G if and only if aH = Ha for all a in G (see coset). Normal subgroups (and only normal subgroups) can be used to construct quotient groups from a given group.

Évariste Galois was the first to realize the importance of the existence of normal subgroups.

Read more about Normal Subgroup:  Definitions, Examples, Properties, Normal Subgroups and Homomorphisms

Famous quotes containing the word normal:

    Dada doubts everything. Dada is an armadillo. Everything is Dada, too. Beware of Dada. Anti-dadaism is a disease: selfkleptomania, man’s normal condition, is Dada. But the real dadas are against Dada.
    Tristan Tzara (1896–1963)