Direct Sum Of Groups
In mathematics, a group G is called the direct sum of a set of subgroups {Hi} if
- each Hi is a normal subgroup of G
- each distinct pair of subgroups has trivial intersection, and
- G = <{Hi}>; in other words, G is generated by the subgroups {Hi}.
If G is the direct sum of subgroups H and K, then we write G = H + K; if G is the direct sum of a set of subgroups {Hi}, we often write G = ∑Hi. Loosely speaking, a direct sum is isomorphic to a weak direct product of subgroups.
In abstract algebra, this method of construction can be generalized to direct sums of vector spaces, modules, and other structures; see the article direct sum of modules for more information.
This notation is commutative; so that in the case of the direct sum of two subgroups, G = H + K = K + H. It is also associative in the sense that if G = H + K, and K = L + M, then G = H + (L + M) = H + L + M.
A group which can be expressed as a direct sum of non-trivial subgroups is called decomposable; otherwise it is called indecomposable.
If G = H + K, then it can be proven that:
- for all h in H, k in K, we have that h*k = k*h
- for all g in G, there exists unique h in H, k in K such that g = h*k
- There is a cancellation of the sum in a quotient; so that (H + K)/K is isomorphic to H
The above assertions can be generalized to the case of G = ∑Hi, where {Hi} is a finite set of subgroups.
- if i ≠ j, then for all hi in Hi, hj in Hj, we have that hi * hj = hj * hi
- for each g in G, there unique set of {hi in Hi} such that
- g = h1*h2* ... * hi * ... * hn
- There is a cancellation of the sum in a quotient; so that ((∑Hi) + K)/K is isomorphic to ∑Hi
Note the similarity with the direct product, where each g can be expressed uniquely as
- g = (h1,h2, ..., hi, ..., hn)
Since hi * hj = hj * hi for all i ≠ j, it follows that multiplication of elements in a direct sum is isomorphic to multiplication of the corresponding elements in the direct product; thus for finite sets of subgroups, ∑Hi is isomorphic to the direct product ×{Hi}.
Read more about Direct Sum Of Groups: Equivalence of Direct Sums, Generalization To Sums Over Infinite Sets
Famous quotes containing the words direct, sum and/or groups:
“I, who travel most often for my pleasure, do not direct myself so badly. If it looks ugly on the right, I take the left; if I find myself unfit to ride my horse, I stop.... Have I left something unseen behind me? I go back; it is still on my road. I trace no fixed line, either straight or crooked.”
—Michel de Montaigne (15331592)
“The sum of the whole matter is this, that our civilization cannot survive materially unless it be redeemed spiritually.”
—Woodrow Wilson (18561924)
“In America every woman has her set of girl-friends; some are cousins, the rest are gained at school. These form a permanent committee who sit on each others affairs, who come out together, marry and divorce together, and who end as those groups of bustling, heartless well-informed club-women who govern society. Against them the Couple of Ehepaar is helpless and Man in their eyes but a biological interlude.”
—Cyril Connolly (19031974)