Cup Product - Definition

Definition

In singular cohomology, the cup product is a construction giving a product on the graded cohomology ring H∗(X) of a topological space X.

The construction starts with a product of cochains: if cp is a p-cochain and dq is a q-cochain, then

where σ is a (p + q) -singular simplex and is the canonical embedding of the simplex spanned by S into the -standard simplex.

Informally, is the p-th front face and is the q-th back face of σ, respectively.

The coboundary of the cup product of cocycles cp and dq is given by

The cup product of two cocycles is again a cocycle, and the product of a coboundary with a cocycle (in either order) is a coboundary. Thus, the cup product operation passes to cohomology, defining a bilinear operation

Read more about this topic:  Cup Product

Famous quotes containing the word definition:

    ... we all know the wag’s definition of a philanthropist: a man whose charity increases directly as the square of the distance.
    George Eliot [Mary Ann (or Marian)

    I’m beginning to think that the proper definition of “Man” is “an animal that writes letters.”
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)

    The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.
    William James (1842–1910)