Covariance Matrix

In probability theory and statistics, a covariance matrix (also known as dispersion matrix or variance covariance matrix) is a matrix whose element in the i, j position is the covariance between the i th and j th elements of a random vector (that is, of a vector of random variables). Each element of the vector is a scalar random variable, either with a finite number of observed empirical values or with a finite or infinite number of potential values specified by a theoretical joint probability distribution of all the random variables.

Intuitively, the covariance matrix generalizes the notion of variance to multiple dimensions. As an example, the variation in a collection of random points in two-dimensional space cannot be characterized fully by a single number, nor would the variances in the x and y directions contain all of the necessary information; a 2×2 matrix would be necessary to fully characterize the two-dimensional variation.

Read more about Covariance Matrix:  Definition, Conflicting Nomenclatures and Notations, Properties, As A Linear Operator, Which Matrices Are Covariance Matrices?, How To Find A Valid Covariance Matrix, Complex Random Vectors, Estimation, As A Parameter of A Distribution

Famous quotes containing the word matrix:

    “The matrix is God?”
    “In a manner of speaking, although it would be more accurate ... to say that the matrix has a God, since this being’s omniscience and omnipotence are assumed to be limited to the matrix.”
    “If it has limits, it isn’t omnipotent.”
    “Exactly.... Cyberspace exists, insofar as it can be said to exist, by virtue of human agency.”
    William Gibson (b. 1948)