Covariance Matrix - Complex Random Vectors

Complex Random Vectors

The variance of a complex scalar-valued random variable with expected value μ is conventionally defined using complex conjugation:


\operatorname{var}(z)
=
\operatorname{E}
\left[ (z-\mu)(z-\mu)^{*}
\right]

where the complex conjugate of a complex number is denoted ; thus the variance of a complex number is a real number.

If is a column-vector of complex-valued random variables, then the conjugate transpose is formed by both transposing and conjugating. In the following expression, the product of a vector with its conjugate transpose results in a square matrix, as its expectation:


\operatorname{E}
\left[ (Z-\mu)(Z-\mu)^\dagger
\right] ,

where denotes the conjugate transpose, which is applicable to the scalar case since the transpose of a scalar is still a scalar. The matrix so obtained will be Hermitian positive-semidefinite, with real numbers in the main diagonal and complex numbers off-diagonal.

Read more about this topic:  Covariance Matrix

Famous quotes containing the words complex and/or random:

    Power is not an institution, and not a structure; neither is it a certain strength we are endowed with; it is the name that one attributes to a complex strategical situation in a particular society.
    Michel Foucault (1926–1984)

    ... the random talk of people who have no chance of immortality and thus can speak their minds out has a setting, often, of lights, streets, houses, human beings, beautiful or grotesque, which will weave itself into the moment for ever.
    Virginia Woolf (1882–1941)