Covariance Matrix - Complex Random Vectors

Complex Random Vectors

The variance of a complex scalar-valued random variable with expected value μ is conventionally defined using complex conjugation:


\operatorname{var}(z)
=
\operatorname{E}
\left[ (z-\mu)(z-\mu)^{*}
\right]

where the complex conjugate of a complex number is denoted ; thus the variance of a complex number is a real number.

If is a column-vector of complex-valued random variables, then the conjugate transpose is formed by both transposing and conjugating. In the following expression, the product of a vector with its conjugate transpose results in a square matrix, as its expectation:


\operatorname{E}
\left[ (Z-\mu)(Z-\mu)^\dagger
\right] ,

where denotes the conjugate transpose, which is applicable to the scalar case since the transpose of a scalar is still a scalar. The matrix so obtained will be Hermitian positive-semidefinite, with real numbers in the main diagonal and complex numbers off-diagonal.

Read more about this topic:  Covariance Matrix

Famous quotes containing the words complex and/or random:

    In the case of all other sciences, arts, skills, and crafts, everyone is convinced that a complex and laborious programme of learning and practice is necessary for competence. Yet when it comes to philosophy, there seems to be a currently prevailing prejudice to the effect that, although not everyone who has eyes and fingers, and is given leather and last, is at once in a position to make shoes, everyone nevertheless immediately understands how to philosophize.
    Georg Wilhelm Friedrich Hegel (1770–1831)

    It is a secret from nobody that the famous random event is most likely to arise from those parts of the world where the old adage “There is no alternative to victory” retains a high degree of plausibility.
    Hannah Arendt (1906–1975)