In probability theory and statistics, the multivariate normal distribution or multivariate Gaussian distribution, is a generalization of the one-dimensional (univariate) normal distribution to higher dimensions. One possible definition is that a random vector is said to be k-variate normally distributed if every linear combination of its k components has a univariate normal distribution. However, its importance derives mainly from the multivariate central limit theorem. The multivariate normal distribution is often used to describe, at least approximately, any set of (possibly) correlated real-valued random variables each of which clusters around a mean value.
Read more about Multivariate Normal Distribution: Notation and Parametrization, Definition, Conditional Distributions, Marginal Distributions, Affine Transformation, Geometric Interpretation, Estimation of Parameters, Bayesian Inference, Multivariate Normality Tests, Drawing Values From The Distribution
Famous quotes containing the words normal and/or distribution:
“You know that fiction, prose rather, is possibly the roughest trade of all in writing. You do not have the reference, the old important reference. You have the sheet of blank paper, the pencil, and the obligation to invent truer than things can be true. You have to take what is not palpable and make it completely palpable and also have it seem normal and so that it can become a part of experience of the person who reads it.”
—Ernest Hemingway (18991961)
“In this distribution of functions, the scholar is the delegated intellect. In the right state, he is, Man Thinking. In the degenerate state, when the victim of society, he tends to become a mere thinker, or, still worse, the parrot of other mens thinking.”
—Ralph Waldo Emerson (18031882)