Multivariate Normal Distribution

In probability theory and statistics, the multivariate normal distribution or multivariate Gaussian distribution, is a generalization of the one-dimensional (univariate) normal distribution to higher dimensions. One possible definition is that a random vector is said to be k-variate normally distributed if every linear combination of its k components has a univariate normal distribution. However, its importance derives mainly from the multivariate central limit theorem. The multivariate normal distribution is often used to describe, at least approximately, any set of (possibly) correlated real-valued random variables each of which clusters around a mean value.

Read more about Multivariate Normal Distribution:  Notation and Parametrization, Definition, Conditional Distributions, Marginal Distributions, Affine Transformation, Geometric Interpretation, Estimation of Parameters, Bayesian Inference, Multivariate Normality Tests, Drawing Values From The Distribution

Famous quotes containing the words normal and/or distribution:

    Marriages will survive despite enormous strains. A lover will ask, “Is he happy? Can he still love her?” They don’t realise that’s not the point, it’s all the normal things they do together—going to the supermarket, choosing wallpaper, doing things with the children.
    Carol Clewlow (b. 1947)

    The question for the country now is how to secure a more equal distribution of property among the people. There can be no republican institutions with vast masses of property permanently in a few hands, and large masses of voters without property.... Let no man get by inheritance, or by will, more than will produce at four per cent interest an income ... of fifteen thousand dollars] per year, or an estate of five hundred thousand dollars.
    Rutherford Birchard Hayes (1822–1893)