Complex Plane

In mathematics, the complex plane or z-plane is a geometric representation of the complex numbers established by the real axis and the orthogonal imaginary axis. It can be thought of as a modified Cartesian plane, with the real part of a complex number represented by a displacement along the x-axis, and the imaginary part by a displacement along the y-axis.

The concept of the complex plane allows a geometric interpretation of complex numbers. Under addition, they add like vectors. The multiplication of two complex numbers can be expressed most easily in polar coordinates – the magnitude or modulus of the product is the product of the two absolute values, or moduli, and the angle or argument of the product is the sum of the two angles, or arguments. In particular, multiplication by a complex number of modulus 1 acts as a rotation.

The complex plane is sometimes called the Argand plane because it is used in Argand diagrams. These are named after Jean-Robert Argand (1768–1822), although they were first described by Norwegian-Danish land surveyor and mathematician Caspar Wessel (1745–1818). Argand diagrams are frequently used to plot the positions of the poles and zeroes of a function in the complex plane.

Read more about Complex Plane:  Notational Conventions, Stereographic Projections, Cutting The Plane, Gluing The Cut Plane Back Together, Use of The Complex Plane in Control Theory, Other Meanings of "complex Plane", Terminology

Famous quotes containing the words complex and/or plane:

    It’s a complex fate, being an American, and one of the responsibilities it entails is fighting against a superstitious valuation of Europe.
    Henry James (1843–1916)

    In time the scouring of wind and rain will wear down the ranges and plane off the region until it has the drab monotony of the older deserts. In the meantime—a two-million-year meantime—travelers may enjoy the cruel beauties of a desert in its youth,....
    —For the State of California, U.S. public relief program (1935-1943)