Complex Analysis

Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is useful in many branches of mathematics, including number theory and applied mathematics; as well as in physics, including hydrodynamics, thermodynamics, and electrical engineering.

Murray R. Spiegel described complex analysis as "one of the most beautiful as well as useful branches of Mathematics".

Complex analysis is particularly concerned with the analytic functions of complex variables (or, more generally, meromorphic functions). Because the separate real and imaginary parts of any analytic function must satisfy Laplace's equation, complex analysis is widely applicable to two-dimensional problems in physics.

Read more about Complex Analysis:  History, Complex Functions, Holomorphic Functions, Major Results

Famous quotes containing the words complex and/or analysis:

    By “object” is meant some element in the complex whole that is defined in abstraction from the whole of which it is a distinction.
    John Dewey (1859–1952)

    Analysis as an instrument of enlightenment and civilization is good, in so far as it shatters absurd convictions, acts as a solvent upon natural prejudices, and undermines authority; good, in other words, in that it sets free, refines, humanizes, makes slaves ripe for freedom. But it is bad, very bad, in so far as it stands in the way of action, cannot shape the vital forces, maims life at its roots. Analysis can be a very unappetizing affair, as much so as death.
    Thomas Mann (1875–1955)