Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is useful in many branches of mathematics, including number theory and applied mathematics; as well as in physics, including hydrodynamics, thermodynamics, and electrical engineering.
Murray R. Spiegel described complex analysis as "one of the most beautiful as well as useful branches of Mathematics".
Complex analysis is particularly concerned with the analytic functions of complex variables (or, more generally, meromorphic functions). Because the separate real and imaginary parts of any analytic function must satisfy Laplace's equation, complex analysis is widely applicable to two-dimensional problems in physics.
Read more about Complex Analysis: History, Complex Functions, Holomorphic Functions, Major Results
Famous quotes containing the words complex and/or analysis:
“Power is not an institution, and not a structure; neither is it a certain strength we are endowed with; it is the name that one attributes to a complex strategical situation in a particular society.”
—Michel Foucault (19261984)
“Ask anyone committed to Marxist analysis how many angels on the head of a pin, and you will be asked in return to never mind the angels, tell me who controls the production of pins.”
—Joan Didion (b. 1934)