In mathematics, the real line, or real number line is the line whose points are the real numbers. That is, the real line is the set R of all real numbers, viewed as a geometric space, namely the Euclidean space of dimension one. It can be thought of as a vector space (or affine space), a metric space, a topological space, a measure space, or a linear continuum.
Just like the set of real numbers, the real line is usually denoted by the symbol R (or alternatively, the letter “R” in blackboard bold). However, it is sometimes denoted R1 in order to emphasize its role as the first Euclidean space.
This article focuses on the aspects of R as a geometric space in topology, geometry, and real analysis. The real numbers also play an important role in algebra as a field, but in this context R is rarely referred to as a line. For more information on R in all of its guises, see real number.
Read more about Real Line: As A Linear Continuum, As A Metric Space, As A Topological Space, As A Vector Space, As A Measure Space
Famous quotes containing the words real and/or line:
“Although there are not real winners or losers, in games of pretending children soon learn that the game ends when mutuality ends.”
—Joanne E. Oppenheim (20th century)
“What comes over a man, is it soul or mind
That to no limits and bounds he can stay confined?
You would say his ambition was to extend the reach
Clear to the Arctic of every living kind.
Why is his nature forever so hard to teach
That though there is no fixed line between wrong and right,
There are roughly zones whose laws must be obeyed?”
—Robert Frost (18741963)