Beta Function

In mathematics, the beta function, also called the Euler integral of the first kind, is a special function defined by

 \mathrm{\Beta}(x,y) = \int_0^1t^{x-1}(1-t)^{y-1}\,dt
\!

for

The beta function was studied by Euler and Legendre and was given its name by Jacques Binet; its symbol Β is a Greek capital β rather than the similar Latin capital B.

Read more about Beta Function:  Properties, Relationship Between Gamma Function and Beta Function, Derivatives, Integrals, Approximation, Incomplete Beta Function, Calculation

Famous quotes containing the word function:

    Philosophical questions are not by their nature insoluble. They are, indeed, radically different from scientific questions, because they concern the implications and other interrelations of ideas, not the order of physical events; their answers are interpretations instead of factual reports, and their function is to increase not our knowledge of nature, but our understanding of what we know.
    Susanne K. Langer (1895–1985)