Beta Function - Relationship Between Gamma Function and Beta Function

Relationship Between Gamma Function and Beta Function

To derive the integral representation of the beta function, write the product of two factorials as

 \Gamma(x)\Gamma(y) = \int_0^\infty\ e^{-u} u^{x-1}\,du \int_0^\infty\ e^{-v} v^{y-1}\,dv
=\int_0^\infty\int_0^\infty\ e^{-u-v} u^{x-1}v^{y-1}\,du \,dv.
\!

Changing variables by putting u=zt, v=z(1-t) shows that this is


\int_{z=0}^\infty\int_{t=0}^1\ e^{-z} (zt)^{x-1}(z(1-t))^{y-1}z\,dt \,dz
=\int_{z=0}^\infty \ e^{-z}z^{x+y-1} \,dz\int_{t=0}^1t^{x-1}(1-t)^{y-1}\,dt.
\!

Hence

 \Gamma(x)\,\Gamma(y)=\Gamma(x+y)\Beta(x,y) .

The stated identity may be seen as a particular case of the identity for the integral of a convolution. Taking

and, one has:
.

Read more about this topic:  Beta Function

Famous quotes containing the words relationship between, relationship and/or function:

    The relationship between mother and professional has not been a partnership in which both work together on behalf of the child, in which the expert helps the mother achieve her own goals for her child. Instead, professionals often behave as if they alone are advocates for the child; as if they are the guardians of the child’s needs; as if the mother left to her own devices will surely damage the child and only the professional can rescue him.
    Elaine Heffner (20th century)

    Friendship is by its very nature freer of deceit than any other relationship we can know because it is the bond least affected by striving for power, physical pleasure, or material profit, most liberated from any oath of duty or of constancy.
    Francine Du Plesssix Gray (20th century)

    Think of the tools in a tool-box: there is a hammer, pliers, a saw, a screwdriver, a rule, a glue-pot, nails and screws.—The function of words are as diverse as the functions of these objects.
    Ludwig Wittgenstein (1889–1951)