Real Algebraic Geometry
The real algebraic geometry is the study of the real points of the algebraic geometry.
The fact that the field of the reals number is an ordered field may not be occulted in such a study. For example, the curve of equation is a circle if, but does not have any real point if . It follows that real algebraic geometry is not only the study of the real algebraic varieties, but has been generalized to the study of the semi-algebraic sets, which are the solutions of systems of polynomial equations and polynomial inequalities. For example, a branch of the hyperbola of equation is not an algebraic variety, but is a semi-algebraic set defined by and or by and .
One of the challenging problems of real algebraic geometry is the unsolved Hilbert's sixteenth problem: Decide which respective positions are possible for the ovals of a nonsingular plane curve of degree 8.
Read more about this topic: Algebraic Geometry
Famous quotes containing the words real, algebraic and/or geometry:
“A real gentleman, even if he loses everything he owns, must show no emotion. Money must be so far beneath a gentleman that it is hardly worth troubling about.”
—Feodor Dostoyevsky (18211881)
“I have no scheme about it,no designs on men at all; and, if I had, my mode would be to tempt them with the fruit, and not with the manure. To what end do I lead a simple life at all, pray? That I may teach others to simplify their lives?and so all our lives be simplified merely, like an algebraic formula? Or not, rather, that I may make use of the ground I have cleared, to live more worthily and profitably?”
—Henry David Thoreau (18171862)
“I am present at the sowing of the seed of the world. With a geometry of sunbeams, the soul lays the foundations of nature.”
—Ralph Waldo Emerson (18031882)