Alexandroff Extension

In mathematical field of topology, the Alexandroff extension is a way to extend a noncompact topological space by adjoining a single point in such a way that the resulting space is compact. It is named for the Russian mathematician Pavel Alexandrov.

More precisely, let X be a topological space. Then the Alexandroff extension of X is a certain compact space X* together with an open embedding c : XX* such that the complement of X in X* consists of a single point, typically denoted ∞. The map c is a Hausdorff compactification if and only if X is a locally compact, noncompact Hausdorff space. For such spaces the Alexandroff extension is called the one-point compactification or Alexandroff compactification. The advantages of the Alexandroff compactification lie in its simple, often geometrically meaningful structure and the fact that it is in a precise sense minimal among all compactifications; the disadvantage lies in the fact that it only gives a Hausdorff compactification on the class of locally compact, noncompact Hausdorff spaces, unlike the Stone–Čech compactification which exists for any Tychonoff space, a much larger class of spaces.

Read more about Alexandroff Extension:  Example: Inverse Stereographic Projection, Motivation, The Alexandroff Extension, The One-point Compactification, Further Examples

Famous quotes containing the word extension:

    ‘Tis the perception of the beautiful,
    A fine extension of the faculties,
    Platonic, universal, wonderful,
    Drawn from the stars, and filtered through the skies,
    Without which life would be extremely dull.
    George Gordon Noel Byron (1788–1824)