In mathematical field of topology, the Alexandroff extension is a way to extend a noncompact topological space by adjoining a single point in such a way that the resulting space is compact. It is named for the Russian mathematician Pavel Alexandrov.
More precisely, let X be a topological space. Then the Alexandroff extension of X is a certain compact space X* together with an open embedding c : X → X* such that the complement of X in X* consists of a single point, typically denoted ∞. The map c is a Hausdorff compactification if and only if X is a locally compact, noncompact Hausdorff space. For such spaces the Alexandroff extension is called the one-point compactification or Alexandroff compactification. The advantages of the Alexandroff compactification lie in its simple, often geometrically meaningful structure and the fact that it is in a precise sense minimal among all compactifications; the disadvantage lies in the fact that it only gives a Hausdorff compactification on the class of locally compact, noncompact Hausdorff spaces, unlike the Stone–Čech compactification which exists for any Tychonoff space, a much larger class of spaces.
Read more about Alexandroff Extension: Example: Inverse Stereographic Projection, Motivation, The Alexandroff Extension, The One-point Compactification, Further Examples
Famous quotes containing the word extension:
“Slavery is founded in the selfishness of mans natureopposition to it, is [in?] his love of justice.... Repeal the Missouri compromiserepeal all compromisesrepeal the declaration of independencerepeal all past history, you still can not repeal human nature. It still will be the abundance of mans heart, that slavery extension is wrong; and out of the abundance of his heart, his mouth will continue to speak.”
—Abraham Lincoln (18091865)