Further Examples
- The one-point compactification of the set of positive integers is homeomorphic to the space consisting of K = {0} U {1/n | n is a positive integer.} with the order topology.
- The one-point compactification of n-dimensional Euclidean space Rn is homeomorphic to the n-sphere Sn. As above, the map can be given explicitly as an n-dimensional inverse stereographic projection.
- Since the closure of a connected subset is connected, the Alexandroff extension of a noncompact connected space is connected. However a one-point compactification may "connect" a disconnected space: for instance the one-point compactification of the disjoint union of copies of the interval (0,1) is a wedge of circles.
- The Alexandroff extension can be viewed as a functor from the category of topological spaces to the category whose objects are continuous maps and for which the morphisms from to are pairs of continuous maps
such that . In particular, homeomorphic spaces have isomorphic Alexandroff extensions.
Read more about this topic: Alexandroff Extension
Famous quotes containing the word examples:
“No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.”
—André Breton (18961966)
“Histories are more full of examples of the fidelity of dogs than of friends.”
—Alexander Pope (16881744)