Alexandroff Extension - The One-point Compactification

The One-point Compactification

In particular, the Alexandroff extension is a compactification of X if and only if X is Hausdorff, noncompact and locally compact. In this case it is called the one-point compactification or Alexandroff compactification of X. Recall from the above discussion that any compactification with one point remainder is necessarily (isomorphic to) the Alexandroff compactification.

Let X be any noncompact Tychonoff space. Under the natural partial ordering on the set of equivalence classes of compactifications, any minimal element is equivalent to the Alexandroff extension (Engelking, Theorem 3.5.12). It follows that a noncompact Tychonoff space admits a minimal compactification if and only if it is locally compact.

Read more about this topic:  Alexandroff Extension