Alexandroff Extension - The Alexandroff Extension

The Alexandroff Extension

Let X be any topological space, and let be any object which is not already an element of X. (In terms of formal set theory one could take, for example, to be X itself, but it is not really necessary or helpful to be so specific.) Put, and topologize by taking as open sets all the open subsets U of X together with all subsets V which contain and such that is closed and compact, (Kelley 1975, p. 150).

The inclusion map is called the Alexandroff extension of X (Willard, 19A).

The above properties all follow easily from the above discussion:

  • The map c is continuous and open: it embeds X as an open subset of .
  • The space is compact.
  • The image c(X) is dense in, if X is noncompact.
  • The space is Hausdorff if and only if X is Hausdorff and locally compact.

Read more about this topic:  Alexandroff Extension

Famous quotes containing the word extension:

    The desert is a natural extension of the inner silence of the body. If humanity’s language, technology, and buildings are an extension of its constructive faculties, the desert alone is an extension of its capacity for absence, the ideal schema of humanity’s disappearance.
    Jean Baudrillard (b. 1929)