Von Neumann Regular Ring

In mathematics, a von Neumann regular ring is a ring R such that for every a in R there exists an x in R such that a = axa. To avoid the possible confusion with the regular rings and regular local rings of commutative algebra (which are unrelated notions), von Neumann regular rings are also called absolutely flat rings, because these rings are characterized by the fact that every left module is flat.

One may think of x as a "weak inverse" of a. In general x is not uniquely determined by a.

Von Neumann regular rings were introduced by von Neumann (1936) under the name of "regular rings", during his study of von Neumann algebras and continuous geometry.

An element a of a ring is called a von Neumann regular element if there exists an x such that a=axa. An ideal is called a (von Neumann) regular ideal if it is a von Neumann regular non-unital ring, i.e if for every element a in there exists an element x in such that a=axa.

Read more about Von Neumann Regular Ring:  Examples, Facts, Generalizations and Specializations

Famous quotes containing the words von, neumann, regular and/or ring:

    Talent is formed in solitude,
    Character in the bustle of the world.
    —Johann Wolfgang Von Goethe (1749–1832)

    What a lesson here for our world. One blast, thousands of years of civilization wiped out.
    —Kurt Neumann (1906–1958)

    A regular council was held with the Indians, who had come in on their ponies, and speeches were made on both sides through an interpreter, quite in the described mode,—the Indians, as usual, having the advantage in point of truth and earnestness, and therefore of eloquence. The most prominent chief was named Little Crow. They were quite dissatisfied with the white man’s treatment of them, and probably have reason to be so.
    Henry David Thoreau (1817–1862)

    Rich and rare were the gems she wore,
    And a bright gold ring on her hand she bore.
    Thomas Moore (1779–1852)