In mathematics, a von Neumann regular ring is a ring R such that for every a in R there exists an x in R such that a = axa. To avoid the possible confusion with the regular rings and regular local rings of commutative algebra (which are unrelated notions), von Neumann regular rings are also called absolutely flat rings, because these rings are characterized by the fact that every left module is flat.
One may think of x as a "weak inverse" of a. In general x is not uniquely determined by a.
Von Neumann regular rings were introduced by von Neumann (1936) under the name of "regular rings", during his study of von Neumann algebras and continuous geometry.
An element a of a ring is called a von Neumann regular element if there exists an x such that a=axa. An ideal is called a (von Neumann) regular ideal if it is a von Neumann regular non-unital ring, i.e if for every element a in there exists an element x in such that a=axa.
Read more about Von Neumann Regular Ring: Examples, Facts, Generalizations and Specializations
Famous quotes containing the words von, neumann, regular and/or ring:
“So much has already been said about Shakespeare that there doesnt seem to be anything more to say; yet it is the quality of the spirit that it forever stimulates the spirit.”
—Johann Wolfgang Von Goethe (17491832)
“It means there are times when a mere scientist has gone as far as he can. When he must pause and observe respectfully while something infinitely greater assumes control.”
—Kurt Neumann (19061958)
“It was inspiriting to hear the regular dip of the paddles, as if they were our fins or flippers, and to realize that we were at length fairly embarked. We who had felt strangely as stage-passengers and tavern-lodgers were suddenly naturalized there and presented with the freedom of the lakes and woods.”
—Henry David Thoreau (18171862)
“Close friends contribute to our personal growth. They also contribute to our personal pleasure, making the music sound sweeter, the wine taste richer, the laughter ring louder because they are there.”
—Judith Viorst (20th century)