Von Neumann Regular Ring - Facts

Facts

The following statements are equivalent for the ring R:

  • R is von Neumann regular
  • every principal left ideal is generated by an idempotent
  • every finitely generated left ideal is generated by an idempotent
  • every principal left ideal is a direct summand of the left R-module R
  • every finitely generated left ideal is a direct summand of the left R-module R
  • every finitely generated submodule of a projective left R-module P is a direct summand of P
  • every left R-module is flat: this is also known as R being absolutely flat, or R having weak dimension 0.
  • every short exact sequence of left R-modules is pure exact

The corresponding statements for right modules are also equivalent to R being von Neumann regular.

In a commutative von Neumann regular ring, for each element x there is a unique element y such that xyx=x and yxy=y, so there is a canonical way to choose the "weak inverse" of x. The following statements are equivalent for the commutative ring R:

  • R is von Neumann regular
  • R has Krull dimension 0 and is reduced
  • Every localization of R at a maximal ideal is a field
  • R is a subring of a product of fields closed under taking "weak inverses" of xR (the unique element y such that xyx=x and yxy=y).

Also, the following are equivalent: for a commutative ring A

  • is von Neumann regular.
  • The spectrum of R is Hausdorff (with respect to Zariski topology).
  • The constructible topology and Zariski topology for coincide.

Every semisimple ring is von Neumann regular, and a left (or right) Noetherian von Neumann regular ring is semisimple. Every von Neumann regular ring has Jacobson radical {0} and is thus semiprimitive (also called "Jacobson semi-simple").

Generalizing the above example, suppose S is some ring and M is an S-module such that every submodule of M is a direct summand of M (such modules M are called semisimple). Then the endomorphism ring EndS(M) is von Neumann regular. In particular, every semisimple ring is von Neumann regular.

Read more about this topic:  Von Neumann Regular Ring

Famous quotes containing the word facts:

    The bases for historical knowledge are not empirical facts but written texts, even if these texts masquerade in the guise of wars or revolutions.
    Paul Deman (1919–1983)

    A radical is one of whom people say “He goes too far.” A conservative, on the other hand, is one who “doesn’t go far enough.” Then there is the reactionary, “one who doesn’t go at all.” All these terms are more or less objectionable, wherefore we have coined the term “progressive.” I should say that a progressive is one who insists upon recognizing new facts as they present themselves—one who adjusts legislation to these new facts.
    Woodrow Wilson (1856–1924)

    But lest I should mislead any when I have my own head and obey my whims, let me remind the reader that I am only an experimenter. Do not set the least value on what I do, or the least discredit on what I do not, as if I pretended to settle any thing as true or false. I unsettle all things. No facts are to me sacred; none are profane; I simply experiment, an endless seeker with no Past at my back.
    Ralph Waldo Emerson (1803–1882)