Topology and Smooth Structure
The tangent bundle comes equipped with a natural topology (not the disjoint union topology) and smooth structure so as to make it into a manifold in its own right. The dimension of TM is twice the dimension of M.
Each tangent space of an n-dimensional manifold is an n-dimensional vector space. If U is an open contractible subset of M, then there is a diffeomorphism from TU to U × Rn which restricts to a linear isomorphism from each tangent space TxU to {x}× Rn . As a manifold, however, TM is not always diffeomorphic to the product manifold M × Rn. When it is of the form M × Rn, then the tangent bundle is said to be trivial. Trivial tangent bundles usually occur for manifolds equipped with a 'compatible group structure'; for instance, in the case where the manifold is a Lie group. The tangent bundle of the unit circle is trivial because it is a Lie group (under multiplication and its natural differential structure). It is not true however that all spaces with trivial tangent bundles are Lie groups; manifolds which have a trivial tangent bundle are called parallelizable. Just as manifolds are locally modelled on Euclidean space, tangent bundles are locally modelled on U × Rn, where U is an open subset of Euclidean space.
If M is a smooth n-dimensional manifold, then it comes equipped with an atlas of charts (Uα, φα) where Uα is an open set in M and
is a diffeomorphism. These local coordinates on U give rise to an isomorphism between TxM and Rn for each x ∈ U. We may then define a map
by
We use these maps to define the topology and smooth structure on TM. A subset A of TM is open if and only if is open in R2n for each α. These maps are then homeomorphisms between open subsets of TM and R2n and therefore serve as charts for the smooth structure on TM. The transition functions on chart overlaps are induced by the Jacobian matrices of the associated coordinate transformation and are therefore smooth maps between open subsets of R2n.
The tangent bundle is an example of a more general construction called a vector bundle (which is itself a specific kind of fiber bundle). Explicitly, the tangent bundle to an n-dimensional manifold M may be defined as a rank n vector bundle over M whose transition functions are given by the Jacobian of the associated coordinate transformations.
Read more about this topic: Tangent Bundle
Famous quotes containing the words smooth and/or structure:
“A leaf that is supposed to grow is full of wrinkles and creases before it develops; if one doesnt have the patience and wants the leaf to be as smooth as a willow leaf from the start, then there is a problem.”
—Johann Wolfgang Von Goethe (17491832)
“The question is still asked of women: How do you propose to answer the need for child care? That is an obvious attempt to structure conflict in the old terms. The questions are rather: If we as a human community want children, how does the total society propose to provide for them?”
—Jean Baker Miller (20th century)