Gauss Map

In differential geometry, the Gauss map (named after Carl F. Gauss) maps a surface in Euclidean space R3 to the unit sphere S2. Namely, given a surface X lying in R3, the Gauss map is a continuous map N: XS2 such that N(p) is a unit vector orthogonal to X at p, namely the normal vector to X at p.

The Gauss map can be defined (globally) if and only if the surface is orientable, in which case its degree is half the Euler characteristic. The Gauss map can always be defined locally (i.e. on a small piece of the surface). The Jacobian determinant of the Gauss map is equal to Gaussian curvature, and the differential of the Gauss map is called the shape operator.

Gauss first wrote a draft on the topic in 1825 and published in 1827.

There is also a Gauss map for a link, which computes linking number.

Read more about Gauss Map:  Generalizations, Total Curvature, Cusps of The Gauss Map

Famous quotes containing the word map:

    In my writing I am acting as a map maker, an explorer of psychic areas ... a cosmonaut of inner space, and I see no point in exploring areas that have already been thoroughly surveyed.
    William Burroughs (b. 1914)