Tangent Bundle

In differential geometry, the tangent bundle of a differentiable manifold M is the disjoint union of the tangent spaces of M. That is,

where TxM denotes the tangent space to M at the point x. So, an element of TM can be thought of as a pair (x, v), where x is a point in M and v is a tangent vector to M at x. There is a natural projection

defined by π(x, v) = x. This projection maps each tangent space TxM to the single point x.

The tangent bundle to a manifold is the prototypical example of a vector bundle (a fiber bundle whose fibers are vector spaces). A section of TM is a vector field on M, and the dual bundle to TM is the cotangent bundle, which is the disjoint union of the cotangent spaces of M. By definition, a manifold M is parallelizable if and only if the tangent bundle is trivial. By definition, a manifold M is framed if and only if the tangent bundle TM is stably trivial, meaning that for some trivial bundle E the Whitney sum TME is trivial. For example, the n-dimensional sphere Sn is framed for all n, but parallelizable only for n=1,3,7 (by results of Bott-Milnor and Kervaire).

Read more about Tangent Bundle:  Role, Topology and Smooth Structure, Examples, Vector Fields, Higher-order Tangent Bundles, Canonical Vector Field On Tangent Bundle, Lifts

Famous quotes containing the word bundle:

    We styled ourselves the Knights of the Umbrella and the Bundle; for, wherever we went ... the umbrella and the bundle went with us; for we wished to be ready to digress at any moment. We made it our home nowhere in particular, but everywhere where our umbrella and bundle were.
    Henry David Thoreau (1817–1862)