Symplectic Manifold - Linear Symplectic Manifold

Linear Symplectic Manifold

There is a standard linear model, namely a symplectic vector space R2n. Let R2n have the basis {v1, ... ,v2n}. Then we define our symplectic form ω so that for all 1 ≤ in we have ω(vi,vn+i) = 1, ω(vn+i,vi) = −1, and ω is zero for all other pairs of basis vectors. In this case the symplectic form reduces to a simple quadratic form. If In denotes the n × n identity matrix then the matrix, Ω, of this quadratic form is given by the (2n × 2n) block matrix:

Read more about this topic:  Symplectic Manifold

Famous quotes containing the word manifold:

    Before abstraction everything is one, but one like chaos; after abstraction everything is united again, but this union is a free binding of autonomous, self-determined beings. Out of a mob a society has developed, chaos has been transformed into a manifold world.
    Novalis [Friedrich Von Hardenberg] (1772–1801)