Symplectic Manifold - Linear Symplectic Manifold

Linear Symplectic Manifold

There is a standard linear model, namely a symplectic vector space R2n. Let R2n have the basis {v1, ... ,v2n}. Then we define our symplectic form ω so that for all 1 ≤ in we have ω(vi,vn+i) = 1, ω(vn+i,vi) = −1, and ω is zero for all other pairs of basis vectors. In this case the symplectic form reduces to a simple quadratic form. If In denotes the n × n identity matrix then the matrix, Ω, of this quadratic form is given by the (2n × 2n) block matrix:

Read more about this topic:  Symplectic Manifold

Famous quotes containing the word manifold:

    As one who knows many things, the humanist loves the world precisely because of its manifold nature and the opposing forces in it do not frighten him. Nothing is further from him than the desire to resolve such conflicts ... and this is precisely the mark of the humanist spirit: not to evaluate contrasts as hostility but to seek human unity, that superior unity, for all that appears irreconcilable.
    Stefan Zweig (18811942)