Differential geometry is a mathematical discipline that uses the techniques of differential calculus and integral calculus, as well as linear algebra and multilinear algebra, to study problems in geometry. The theory of plane and space curves and of surfaces in the three-dimensional Euclidean space formed the basis for development of differential geometry during the 18th century and the 19th century. Since the late 19th century, differential geometry has grown into a field concerned more generally with the geometric structures on differentiable manifolds. Differential geometry is closely related to differential topology, and to the geometric aspects of the theory of differential equations. The differential geometry of surfaces captures many of the key ideas and techniques characteristic of this field.
Read more about Differential Geometry: Bundles and Connections, Intrinsic Versus Extrinsic, Applications
Famous quotes containing the words differential and/or geometry:
“But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.”
—Antonin Artaud (18961948)
“The geometry of landscape and situation seems to create its own systems of time, the sense of a dynamic element which is cinematising the events of the canvas, translating a posture or ceremony into dynamic terms. The greatest movie of the 20th century is the Mona Lisa, just as the greatest novel is Grays Anatomy.”
—J.G. (James Graham)