Definition
A symplectic form on a manifold M is a closed non-degenerate differential 2-form ω. The non-degeneracy condition means that for all p ∈ M we have the property that there does not exist non-zero X ∈ TpM such that ω(X,Y) = 0 for all Y ∈ TpM. The skew-symmetric condition (inherent in the definition of differential 2-form) means that for all p ∈ M we have ω(X,Y) = −ω(Y,X) for all X,Y ∈ TpM. Recall that in odd dimensions antisymmetric matrices are not invertible. Since ω is a differential two-form the skew-symmetric condition implies that M has even dimension. The closed condition means that the exterior derivative of ω, namely dω, is identically zero. A symplectic manifold consists a pair (M,ω), of a manifold M and a symplectic form ω. Assigning a symplectic form ω to a manifold M is referred to as giving M a symplectic structure.
Read more about this topic: Symplectic Manifold
Famous quotes containing the word definition:
“The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.”
—Ralph Waldo Emerson (18031882)
“Was man made stupid to see his own stupidity?
Is God by definition indifferent, beyond us all?
Is the eternal truth mans fighting soul
Wherein the Beast ravens in its own avidity?”
—Richard Eberhart (b. 1904)
“Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.”
—Nadine Gordimer (b. 1923)