Symplectic Manifold - Definition

Definition

A symplectic form on a manifold M is a closed non-degenerate differential 2-form ω. The non-degeneracy condition means that for all pM we have the property that there does not exist non-zero XTpM such that ω(X,Y) = 0 for all YTpM. The skew-symmetric condition (inherent in the definition of differential 2-form) means that for all pM we have ω(X,Y) = −ω(Y,X) for all X,YTpM. Recall that in odd dimensions antisymmetric matrices are not invertible. Since ω is a differential two-form the skew-symmetric condition implies that M has even dimension. The closed condition means that the exterior derivative of ω, namely dω, is identically zero. A symplectic manifold consists a pair (M,ω), of a manifold M and a symplectic form ω. Assigning a symplectic form ω to a manifold M is referred to as giving M a symplectic structure.

Read more about this topic:  Symplectic Manifold

Famous quotes containing the word definition:

    One definition of man is “an intelligence served by organs.”
    Ralph Waldo Emerson (1803–1882)

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)

    ... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lens—if we are unaware that women even have a history—we live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.
    Adrienne Rich (b. 1929)