The standard error is the standard deviation of the sampling distribution of a statistic. The term may also be used to refer to an estimate of that standard deviation, derived from a particular sample used to compute the estimate.
For example, the sample mean is the usual estimator of a population mean. However, different samples drawn from that same population would in general have different values of the sample mean. The standard error of the mean (i.e., of using the sample mean as a method of estimating the population mean) is the standard deviation of those sample means over all possible samples (of a given size) drawn from the population. Secondly, the standard error of the mean can refer to an estimate of that standard deviation, computed from the sample of data being analyzed at the time.
In practical applications, the true value of the standard deviation (of the error) is usually unknown. As a result, the term standard error is often used to refer to an estimate of this unknown quantity. In such cases it is important to be clear about what has been done and to attempt to take proper account of the fact that the standard error is only an estimate. Unfortunately, this is not often possible and it may then be better to use an approach that avoids using a standard error, for example by using maximum likelihood or a more formal approach to deriving confidence intervals. One well-known case where a proper allowance can be made arises where Student's t-distribution is used to provide a confidence interval for an estimated mean or difference of means. In other cases, the standard error may be used to provide an indication of the size of the uncertainty, but its formal or semi-formal use to provide confidence intervals or tests should be avoided unless the sample size is at least moderately large. Here "large enough" would depend on the particular quantities being analyzed (see power).
In regression analysis, the term "standard error" is also used in the phrase standard error of the regression to mean the ordinary least squares estimate of the standard deviation of the underlying errors.
Read more about Standard Error: Standard Error of The Mean, Assumptions and Usage, Correction For Finite Population, Correction For Correlation in The Sample, Relative Standard Error, Standard Error of Mean Versus Standard Deviation
Famous quotes containing the words standard and/or error:
“An indirect quotation we can usually expect to rate only as better or worse, more or less faithful, and we cannot even hope for a strict standard of more and less; what is involved is evaluation, relative to special purposes, of an essentially dramatic act.”
—Willard Van Orman Quine (b. 1908)
“The peculiar evil of silencing the expression of an opinion is, that it is robbing the human race; posterity as well as the existing generation; those who dissent from the opinion, still more than those who hold it. If the opinion is right, they are deprived of the opportunity of exchanging error for truth: if wrong, they lose, what is almost as great a benefit, the clearer perception and livelier impression of truth, produced by its collision with error.”
—John Stuart Mill (18061873)