Standard Error - Standard Error of Mean Versus Standard Deviation

Standard Error of Mean Versus Standard Deviation

In scientific and technical literature, experimental data is often summarized either using the mean and standard deviation or the mean with the standard error. This often leads to confusion about their interchangeability. However, the mean and standard deviation are descriptive statistics, whereas the mean and standard error describes bounds on a random sampling process. Despite the small difference in equations for the standard deviation and the standard error, this small difference changes the meaning of what is being reported from a description of the variation in measurements to a probabilistic statement about how the number of samples will provide a better bound on estimates of the population mean, in light of the central limit theorem. Put simply, standard error is an estimate of how close to the population mean your sample mean is likely to be, whereas standard deviation is the degree to which individuals within the sample differ from the sample mean. Standard error should decrease with larger sample sizes, as the estimate of the population mean improves. Standard deviation will be unaffected by sample size.

Read more about this topic:  Standard Error

Famous quotes containing the words standard and/or error:

    I don’t have any problem with a reporter or a news person who says the President is uninformed on this issue or that issue. I don’t think any of us would challenge that. I do have a problem with the singular focus on this, as if that’s the only standard by which we ought to judge a president. What we learned in the last administration was how little having an encyclopedic grasp of all the facts has to do with governing.
    David R. Gergen (b. 1942)

    Error is to truth as sleep is to waking. I have observed that one turns, as if refreshed, from error back to truth.
    Johann Wolfgang Von Goethe (1749–1832)