Standard Error of Mean Versus Standard Deviation
In scientific and technical literature, experimental data is often summarized either using the mean and standard deviation or the mean with the standard error. This often leads to confusion about their interchangeability. However, the mean and standard deviation are descriptive statistics, whereas the mean and standard error describes bounds on a random sampling process. Despite the small difference in equations for the standard deviation and the standard error, this small difference changes the meaning of what is being reported from a description of the variation in measurements to a probabilistic statement about how the number of samples will provide a better bound on estimates of the population mean, in light of the central limit theorem. Put simply, standard error is an estimate of how close to the population mean your sample mean is likely to be, whereas standard deviation is the degree to which individuals within the sample differ from the sample mean. Standard error should decrease with larger sample sizes, as the estimate of the population mean improves. Standard deviation will be unaffected by sample size.
Read more about this topic: Standard Error
Famous quotes containing the words standard and/or error:
“A dwarf who brings a standard along with him to measure his own sizetake my word, is a dwarf in more articles than one.”
—Laurence Sterne (17131768)
“Error is a supposition that pleasure and pain, that intelligence, substance, life, are existent in matter. Error is neither Mind nor one of Minds faculties. Error is the contradiction of Truth. Error is a belief without understanding. Error is unreal because untrue. It is that which seemeth to be and is not. If error were true, its truth would be error, and we should have a self-evident absurditynamely, erroneous truth. Thus we should continue to lose the standard of Truth.”
—Mary Baker Eddy (18211910)