Standard Error - Correction For Correlation in The Sample

Correction For Correlation in The Sample

If values of the measured quantity A are not statistically independent but have been obtained from known locations in parameter space x, an unbiased estimate of the true standard error of the mean (actually a correction on the standard deviation part) may be obtained by multiplying the calculated standard error of the sample by the factor f:

where the sample bias coefficient ρ is the widely used Prais-Winsten estimate of the autocorrelation-coefficient (a quantity between -1 and 1) for all sample point pairs. This approximate formula is for moderate to large sample sizes; the reference gives the exact formulas for any sample size, and can be applied to heavily autocorrelated time series like Wall Street stock quotes. Moreover this formula works for positive and negative ρ alike. See also unbiased estimation of standard deviation for more discussion.


Read more about this topic:  Standard Error

Famous quotes containing the words correction and/or sample:

    There are always those who are willing to surrender local self-government and turn over their affairs to some national authority in exchange for a payment of money out of the Federal Treasury. Whenever they find some abuse needs correction in their neighborhood, instead of applying the remedy themselves they seek to have a tribunal sent on from Washington to discharge their duties for them, regardless of the fact that in accepting such supervision they are bartering away their freedom.
    Calvin Coolidge (1872–1933)

    The present war having so long cut off all communication with Great-Britain, we are not able to make a fair estimate of the state of science in that country. The spirit in which she wages war is the only sample before our eyes, and that does not seem the legitimate offspring either of science or of civilization.
    Thomas Jefferson (1743–1826)