Spectral Theorem - General Self-adjoint Operators

General Self-adjoint Operators

Many important linear operators which occur in analysis, such as differential operators, are unbounded. There is also a spectral theorem for self-adjoint operators that applies in these cases. To give an example, any constant coefficient differential operator is unitarily equivalent to a multiplication operator. Indeed the unitary operator that implements this equivalence is the Fourier transform; the multiplication operator is a type of Fourier multiplier.

In general, spectral theorem for self-adjoint operators may take several equivalent forms.

Spectral theorem in the form of multiplication operator. For each self-adjoint operator T acting in a Hilbert space H, there exists a unitary operator, making an isometrically isomorphic mapping of the Hilbert space H onto the space L2(M, μ), where the operator T is represented as a multiplication operator.

The Hilbert space H where a self-adjoint operator T acts may be decomposed into a direct sum of Hilbert spaces Hi, in such a way that the operator T, narrowed to each space Hi, has a simple spectrum. It is possible to construct unique such decomposition (up to unitary equivalence), which is called an ordered spectral representation.

Read more about this topic:  Spectral Theorem

Famous quotes containing the word general:

    In democratic ages men rarely sacrifice themselves for another, but they show a general compassion for all the human race. One never sees them inflict pointless suffering, and they are glad to relieve the sorrows of others when they can do so without much trouble to themselves. They are not disinterested, but they are gentle.
    Alexis de Tocqueville (1805–1859)