Quotient Ring

In ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring or residue class ring, is a construction quite similar to the factor groups of group theory and the quotient spaces of linear algebra. One starts with a ring R and a two-sided ideal I in R, and constructs a new ring, the quotient ring R/I, essentially by requiring that all elements of I be zero. Intuitively, the quotient ring R/I is a "simplified version" of R where the elements of I are "ignored".

Quotient rings are distinct from the so-called 'quotient field', or field of fractions, of an integral domain as well as from the more general 'rings of quotients' obtained by localization.

Read more about Quotient Ring:  Formal Quotient Ring Construction, Examples, Properties

Famous quotes containing the word ring:

    There is no magic decoding ring that will help us read our young adolescent’s feelings. Rather, what we need to do is hold out our antennae in the hope that we’ll pick up the right signals.
    —The Lions Clubs International and the Quest Nation. The Surprising Years, III, ch.4 (1985)