Quotient Ring - Formal Quotient Ring Construction

Formal Quotient Ring Construction

Given a ring R and a two-sided ideal I in R, we may define an equivalence relation ~ on R as follows:

a ~ b if and only if ab is in I.

Using the ideal properties, it is not difficult to check that ~ is a congruence relation. In case a ~ b, we say that a and b are congruent modulo I. The equivalence class of the element a in R is given by

= a + I := { a + r : r in I }.

This equivalence class is also sometimes written as a mod I and called the "residue class of a modulo I".

The set of all such equivalence classes is denoted by R/I; it becomes a ring, the factor ring or quotient ring of R modulo I, if one defines

  • (a + I) + (b + I) = (a + b) + I;
  • (a + I)(b + I) = (a b) + I.

(Here one has to check that these definitions are well-defined. Compare coset and quotient group.) The zero-element of R/I is (0 + I) = I, and the multiplicative identity is (1 + I).

The map p from R to R/I defined by p(a) = a + I is a surjective ring homomorphism, sometimes called the natural quotient map or the canonical homomorphism.

Read more about this topic:  Quotient Ring

Famous quotes containing the words formal, ring and/or construction:

    This is no argument against teaching manners to the young. On the contrary, it is a fine old tradition that ought to be resurrected from its current mothballs and put to work...In fact, children are much more comfortable when they know the guide rules for handling the social amenities. It’s no more fun for a child to be introduced to a strange adult and have no idea what to say or do than it is for a grownup to go to a formal dinner and have no idea what fork to use.
    Leontine Young (20th century)

    I like well the ring of your last maxim, “It is only the fear of death makes us reason of impossibilities.” And but for fear, death itself is an impossibility.
    Henry David Thoreau (1817–1862)

    No construction stiff working overtime takes more stress and straining than we did just to stay high.
    Gus Van Sant, U.S. screenwriter and director, and Dan Yost. Bob Hughes (Matt Dillon)