Formal Quotient Ring Construction
Given a ring R and a two-sided ideal I in R, we may define an equivalence relation ~ on R as follows:
- a ~ b if and only if a − b is in I.
Using the ideal properties, it is not difficult to check that ~ is a congruence relation. In case a ~ b, we say that a and b are congruent modulo I. The equivalence class of the element a in R is given by
- = a + I := { a + r : r in I }.
This equivalence class is also sometimes written as a mod I and called the "residue class of a modulo I".
The set of all such equivalence classes is denoted by R/I; it becomes a ring, the factor ring or quotient ring of R modulo I, if one defines
- (a + I) + (b + I) = (a + b) + I;
- (a + I)(b + I) = (a b) + I.
(Here one has to check that these definitions are well-defined. Compare coset and quotient group.) The zero-element of R/I is (0 + I) = I, and the multiplicative identity is (1 + I).
The map p from R to R/I defined by p(a) = a + I is a surjective ring homomorphism, sometimes called the natural quotient map or the canonical homomorphism.
Read more about this topic: Quotient Ring
Famous quotes containing the words formal, ring and/or construction:
“There must be a profound recognition that parents are the first teachers and that education begins before formal schooling and is deeply rooted in the values, traditions, and norms of family and culture.”
—Sara Lawrence Lightfoot (20th century)
“The boxers ring is the enjoyment of the part of society whose animal nature alone has been developed.”
—Ralph Waldo Emerson (18031882)
“When the leaders choose to make themselves bidders at an auction of popularity, their talents, in the construction of the state, will be of no service. They will become flatterers instead of legislators; the instruments, not the guides, of the people.”
—Edmund Burke (17291797)