Formal Quotient Ring Construction
Given a ring R and a two-sided ideal I in R, we may define an equivalence relation ~ on R as follows:
- a ~ b if and only if a − b is in I.
Using the ideal properties, it is not difficult to check that ~ is a congruence relation. In case a ~ b, we say that a and b are congruent modulo I. The equivalence class of the element a in R is given by
- = a + I := { a + r : r in I }.
This equivalence class is also sometimes written as a mod I and called the "residue class of a modulo I".
The set of all such equivalence classes is denoted by R/I; it becomes a ring, the factor ring or quotient ring of R modulo I, if one defines
- (a + I) + (b + I) = (a + b) + I;
- (a + I)(b + I) = (a b) + I.
(Here one has to check that these definitions are well-defined. Compare coset and quotient group.) The zero-element of R/I is (0 + I) = I, and the multiplicative identity is (1 + I).
The map p from R to R/I defined by p(a) = a + I is a surjective ring homomorphism, sometimes called the natural quotient map or the canonical homomorphism.
Read more about this topic: Quotient Ring
Famous quotes containing the words formal, ring and/or construction:
“The bed is now as public as the dinner table and governed by the same rules of formal confrontation.”
—Angela Carter (19401992)
“What is a novel? I say: an invented story. At the same time a story which, though invented has the power to ring true. True to what? True to life as the reader knows life to be or, it may be, feels life to be. And I mean the adult, the grown-up reader. Such a reader has outgrown fairy tales, and we do not want the fantastic and the impossible. So I say to you that a novel must stand up to the adult tests of reality.”
—Elizabeth Bowen (18991973)
“Theres no art
To find the minds construction in the face.”
—William Shakespeare (15641616)