Quadratic Field

In algebraic number theory, a quadratic field is an algebraic number field K of degree two over Q. It is easy to show that the map dQ(√d) is a bijection from the set of all square-free integers d ≠ 0, 1 to the set of all quadratic fields. If d > 0 the corresponding quadratic field is called a real quadratic field, and for d < 0 an imaginary quadratic field or complex quadratic field, corresponding to whether its archimedean embeddings are real or complex.

Quadratic fields have been studied in great depth, initially as part of the theory of binary quadratic forms. There remain some unsolved problems. The class number problem is particularly important.

Read more about Quadratic Field:  Discriminant, Prime Factorization Into Ideals

Famous quotes containing the word field:

    Something told the wild geese
    It was time to go.
    Though the fields lay golden
    Something whispered—”Snow.”
    —Rachel Lyman Field (1894–1942)