Quaternion Group

In group theory, the quaternion group is a non-abelian group of order eight, isomorphic to a certain eight-element subset of the quaternions under multiplication. It is often denoted by Q or Q8, and is given by the group presentation

where 1 is the identity element and −1 commutes with the other elements of the group.

Read more about Quaternion Group:  Cayley Graph, Cayley Table, Properties, Matrix Representations, Galois Group, Generalized Quaternion Group

Famous quotes containing the word group:

    The government of the United States at present is a foster-child of the special interests. It is not allowed to have a voice of its own. It is told at every move, “Don’t do that, You will interfere with our prosperity.” And when we ask: “where is our prosperity lodged?” a certain group of gentlemen say, “With us.”
    Woodrow Wilson (1856–1924)