Quadratic Gauss Sum - Definition

Definition

Let p be an odd prime number and a an integer. Then the Gauss sum mod p, g(a;p), is the following sum of the pth roots of unity:

 g(a;p) =\sum_{n=0}^{p-1}e^{2{\pi}ian^2/p}=\sum_{n=0}^{p-1}\zeta_p^{an^2},
\quad \zeta_p=e^{2{\pi}i/p}.

If a is not divisible by p, an alternative expression for the Gauss sum (with the same value) is

Here is the Legendre symbol, which is a quadratic character mod p. An analogous formula with a general character χ in place of the Legendre symbol defines the Gauss sum G(χ).

Read more about this topic:  Quadratic Gauss Sum

Famous quotes containing the word definition:

    The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.
    Samuel Taylor Coleridge (1772–1834)

    The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!—But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.
    Ralph Waldo Emerson (1803–1882)

    ... we all know the wag’s definition of a philanthropist: a man whose charity increases directly as the square of the distance.
    George Eliot [Mary Ann (or Marian)