Quadratic Gauss Sum
In number theory, quadratic Gauss sums are certain finite sums of roots of unity. A quadratic Gauss sum can be interpreted as a linear combination of the values of the complex exponential function with coefficients given by a quadratic character; for a general character, one obtains a more general Gauss sum. These objects are named after Carl Friedrich Gauss, who studied them extensively and applied them to quadratic, cubic, and biquadratic reciprocity laws.
Read more about Quadratic Gauss Sum: Definition, Generalized Quadratic Gauss Sums
Famous quotes containing the word sum:
“Wonderful Force of Public Opinion! We must act and walk in all points as it prescribes; follow the traffic it bids us, realise the sum of money, the degree of influence it expects of us, or we shall be lightly esteemed; certain mouthfuls of articulate wind will be blown at us, and this what mortal courage can front?”
—Thomas Carlyle (17951881)