Quadratic Gauss Sum

Quadratic Gauss Sum

In number theory, quadratic Gauss sums are certain finite sums of roots of unity. A quadratic Gauss sum can be interpreted as a linear combination of the values of the complex exponential function with coefficients given by a quadratic character; for a general character, one obtains a more general Gauss sum. These objects are named after Carl Friedrich Gauss, who studied them extensively and applied them to quadratic, cubic, and biquadratic reciprocity laws.

Read more about Quadratic Gauss Sum:  Definition, Generalized Quadratic Gauss Sums

Famous quotes containing the word sum:

    If the twentieth century is to be better than the nineteenth, it will be because there are among us men who walk in Priestley’s footsteps....To all eternity, the sum of truth and right will have been increased by their means; to all eternity, falsehoods and injustice will be the weaker because they have lived.
    Thomas Henry Huxley (1825–95)