Quadratic Gauss Sum
In number theory, quadratic Gauss sums are certain finite sums of roots of unity. A quadratic Gauss sum can be interpreted as a linear combination of the values of the complex exponential function with coefficients given by a quadratic character; for a general character, one obtains a more general Gauss sum. These objects are named after Carl Friedrich Gauss, who studied them extensively and applied them to quadratic, cubic, and biquadratic reciprocity laws.
Read more about Quadratic Gauss Sum: Definition, Generalized Quadratic Gauss Sums
Famous quotes containing the word sum:
“Looking foolish does the spirit good. The need not to look foolish is one of youths many burdens; as we get older we are exempted from more and more, and float upward in our heedlessness, singing Gratia Dei sum quod sum.”
—John Updike (b. 1932)