Quadratic Gauss Sum
In number theory, quadratic Gauss sums are certain finite sums of roots of unity. A quadratic Gauss sum can be interpreted as a linear combination of the values of the complex exponential function with coefficients given by a quadratic character; for a general character, one obtains a more general Gauss sum. These objects are named after Carl Friedrich Gauss, who studied them extensively and applied them to quadratic, cubic, and biquadratic reciprocity laws.
Read more about Quadratic Gauss Sum: Definition, Generalized Quadratic Gauss Sums
Famous quotes containing the word sum:
“I would sum up my fear about the future in one word: boring. And thats my one fear: that everything has happened; nothing exciting or new or interesting is ever going to happen again ... the future is just going to be a vast, conforming suburb of the soul.”
—J.G. (James Graham)