Gauss Sum

In mathematics, a Gauss sum or Gaussian sum is a particular kind of finite sum of roots of unity, typically

where the sum is over elements r of some finite commutative ring R, ψ(r) is a group homomorphism of the additive group R+ into the unit circle, and χ(r) is a group homomorphism of the unit group R× into the unit circle, extended to non-unit r where it takes the value 0. Gauss sums are the analogues for finite fields of the Gamma function.

Such sums are ubiquitous in number theory. They occur, for example, in the functional equations of Dirichlet L-functions, where for a Dirichlet character χ the equation relating L(s, χ) and L(1 − s, χ) involves a factor

where χ is the complex conjugate of χ.

The case originally considered by C. F. Gauss was the quadratic Gauss sum, for R the field of residues modulo a prime number p, and χ the Legendre symbol. In this case Gauss proved that G(χ) = p1/2 or ip1/2 according as p is congruent to 1 or 3 modulo 4.

An alternate form for this Gauss sum is:

Quadratic Gauss sums are closely connected with the theory of theta-functions.

The general theory of Gauss sums was developed in the early nineteenth century, with the use of Jacobi sums and their prime decomposition in cyclotomic fields. Gauss sums over a residue ring of integers mod N are linear combinations of closely related sums called Gaussian periods.

The absolute value of Gauss sums is usually found as an application of Plancherel's theorem on finite groups. In the case where R is a field of p elements and χ is nontrivial, the absolute value is p1/2. The determination of the exact value of general Gauss sums, following the result of Gauss on the quadratic case, is a long-standing issue. For some cases see Kummer sum.

Read more about Gauss Sum:  Properties of Gauss Sums of Dirichlet Characters

Famous quotes containing the word sum:

    but Overall is beyond me: is the sum of these events
    I cannot draw, the ledger I cannot keep, the accounting
    beyond the account:
    Archie Randolph Ammons (b. 1926)