Prime Ideal - Important Facts

Important Facts

  • Prime avoidance lemma: If R is a commutative ring, and A is a subring (possibly without unity), and I1,...,In is a collection of ideals of R with at most two members not prime, then if A is not contained in any Ij, it is also not contained in the union of I1,...,In. In particular, A could be an ideal of R.
  • If S is any m-system in R, then a lemma essentially due to Krull shows that there exists an ideal of R maximal with respect to being disjoint from S, and moreover the ideal must be prime. In the case {S}={1}, we have Krull's theorem, and this recovers the maximal ideals of R. Another prototypical m-system is the set of all positive powers of a non-nilpotent element.
  • For a prime ideal P, the complement R\P has another property beyond being an m-system. If xy is in R\P, then both x and y must be in R\P, since P is an ideal. A set which contains the divisors of its elements is called saturated.
  • For a commutative ring R, there is a kind of converse for the previous statement: If S is any nonempty saturated and multiplicatively closed subset of R, the complement R\S is a union of prime ideals of R.
  • The union and the intersection of a chain of prime ideals is a prime ideal. With Zorn's Lemma, this implies that the poset of prime ideals (partially ordered by inclusion) has maximal and minimal elements.

Read more about this topic:  Prime Ideal

Famous quotes containing the words important and/or facts:

    Death does determine life.... Once life is finished it acquires a sense; up to that point it has not got a sense; its sense is suspended and therefore ambiguous. However, to be sincere I must add that for me death is important only if it is not justified and rationalized by reason. For me death is the maximum of epicness and death.
    Pier Paolo Pasolini (1922–1975)

    Each truth that a writer acquires is a lantern, which he turns full on what facts and thoughts lay already in his mind, and behold, all the mats and rubbish which had littered his garret become precious. Every trivial fact in his private biography becomes an illustration of this new principle, revisits the day, and delights all men by its piquancy and new charm.
    Ralph Waldo Emerson (1803–1882)