Prime Ideals For Commutative Rings
An ideal P of a commutative ring R is prime if it has the following two properties:
- If a and b are two elements of R such that their product ab is an element of P, then a is in P or b is in P,
- P is not equal to the whole ring R.
This generalizes the following property of prime numbers: if p is a prime number and if p divides a product ab of two integers, then p divides a or p divides b. We can therefore say
- A positive integer n is a prime number if and only if the ideal nZ is a prime ideal in Z.
Read more about this topic: Prime Ideal
Famous quotes containing the words prime, ideals and/or rings:
“I came there as prime steak and now I feel like low-grade hamburger.”
—Joycelyn Elders (b. 1933)
“Institutional psychiatry is a continuation of the Inquisition. All that has really changed is the vocabulary and the social style. The vocabulary conforms to the intellectual expectations of our age: it is a pseudo-medical jargon that parodies the concepts of science. The social style conforms to the political expectations of our age: it is a pseudo-liberal social movement that parodies the ideals of freedom and rationality.”
—Thomas Szasz (b. 1920)
“Ye say they all have passed away,
That noble race and brave;
That their light canoes have vanished
From off the crested wave;
That, mid the forests where they roamed,
There rings no hunters’ shout;
But their name is on your waters,
Ye may not wash it out.”
—Lydia Huntley Sigourney (1791–1865)