Local Differential Geometry
The local shape of a parametric surface can be analyzed by considering the Taylor expansion of the function that parametrizes it. The arc length of a curve on the surface and the surface area can be found using integration.
Read more about this topic: Parametric Surface
Famous quotes containing the words local, differential and/or geometry:
“Wags try to invent new stories to tell about the legislature, and end by telling the old one about the senator who explained his unaccustomed possession of a large roll of bills by saying that someone pushed it over the transom while he slept. The expression It came over the transom, to explain any unusual good fortune, is part of local folklore.”
—For the State of Montana, U.S. public relief program (1935-1943)
“But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.”
—Antonin Artaud (18961948)
“... geometry became a symbol for human relations, except that it was better, because in geometry things never go bad. If certain things occur, if certain lines meet, an angle is born. You cannot fail. Its not going to fail; it is eternal. I found in rules of mathematics a peace and a trust that I could not place in human beings. This sublimation was total and remained total. Thus, Im able to avoid or manipulate or process pain.”
—Louise Bourgeois (b. 1911)