Parametric Surface

A parametric surface is a surface in the Euclidean space R3 which is defined by a parametric equation with two parameters Parametric representation is the most general way to specify a surface. Surfaces that occur in two of the main theorems of vector calculus, Stokes' theorem and the divergence theorem, are frequently given in a parametric form. The curvature and arc length of curves on the surface, surface area, differential geometric invariants such as the first and second fundamental forms, Gaussian, mean, and principal curvatures can all be computed from a given parametrization.

Read more about Parametric Surface:  Examples, Local Differential Geometry, See Also

Famous quotes containing the word surface:

    See how peaceful it is here. The sea is everything. An immense reservoir of nature where I roam at will.... Think of it. On the surface there is hunger and fear. Men still exercise unjust laws. They fight, tear one another to pieces. A mere few feet beneath the waves their reign ceases, their evil drowns. Here on the ocean floor is the only independence. Here I am free.
    Earl Felton, and Richard Fleischer. Captain Nemo (James Mason)