Orthogonal Group - Over Finite Fields

Over Finite Fields

Orthogonal groups can also be defined over finite fields Fq, where q is a power of a prime p. When defined over such fields, they come in two types in even dimension: O+(2n, q) and O−(2n, q); and one type in odd dimension: O(2n+1, q).

If V is the vector space on which the orthogonal group G acts, it can be written as a direct orthogonal sum as follows:

where Li are hyperbolic lines and W contains no singular vectors. If W = 0, then G is of plus type. If W = then G has odd dimension. If W has dimension 2, G is of minus type.

In the special case where n = 1, is a dihedral group of order .

We have the following formulas for the order of O(n, q), when the characteristic is greater than two:

If −1 is a square in Fq

If −1 is a non-square in Fq

Read more about this topic:  Orthogonal Group

Famous quotes containing the words finite and/or fields:

    Put shortly, these are the two views, then. One, that man is intrinsically good, spoilt by circumstance; and the other that he is intrinsically limited, but disciplined by order and tradition to something fairly decent. To the one party man’s nature is like a well, to the other like a bucket. The view which regards him like a well, a reservoir full of possibilities, I call the romantic; the one which regards him as a very finite and fixed creature, I call the classical.
    Thomas Ernest Hulme (1883–1917)

    I was in love with a beautiful blonde once. She drove me to drink. That’s the one thing I’m indebted to her for.
    Otis Criblecoblis, U.S. screenwriter. W.C. Fields (W.C. Fields)