In mathematics, the indefinite orthogonal group, O(p,q) is the Lie group of all linear transformations of a n = p + q dimensional real vector space which leave invariant a nondegenerate, symmetric bilinear form of signature (p, q). The dimension of the group is
- n(n − 1)/2.
The indefinite special orthogonal group, SO(p,q) is the subgroup of O(p,q) consisting of all elements with determinant 1. Unlike in the definite case, SO(p,q) is not connected – it has 2 components – and there are two additional finite index subgroups, namely the connected SO+(p,q) and O+(p,q), which has 2 components – see the topology section for definition and discussion.
The signature of the form determines the group up to isomorphism; interchanging p with q amounts to replacing the metric by its negative, and so gives the same group. If either p or q equals zero, then the group is isomorphic to the ordinary orthogonal group O(n). We assume in what follows that both p and q are positive.
The group O(p,q) is defined for vector spaces over the reals. For complex spaces, all groups O(p,q; C) are isomorphic to the usual orthogonal group O(p + q; C), since the transform changes the signature of a form.
In even dimension, the middle group O(n,n) is known as the split orthogonal group, and is of particular interest. In odd dimension, the corresponding almost-middle group O(n,n+1) is known as the quasi-split orthogonal group, and plays a similar role.
Read more about Indefinite Orthogonal Group: Examples, Matrix Definition, Topology, Split Orthogonal Group, Split Orthogonal Group in Odd Dimension
Famous quotes containing the words indefinite and/or group:
“For me chemistry represented an indefinite cloud of future potentialities which enveloped my life to come in black volutes torn by fiery flashes, like those which had hidden Mount Sinai. Like Moses, from that cloud I expected my law, the principle of order in me, around me, and in the world.... I would watch the buds swell in spring, the mica glint in the granite, my own hands, and I would say to myself: I will understand this, too, I will understand everything.”
—Primo Levi (19191987)
“No group and no government can properly prescribe precisely what should constitute the body of knowledge with which true education is concerned.”
—Franklin D. Roosevelt (18821945)