Order Theory - Subsets of Ordered Sets

Subsets of Ordered Sets

In an ordered set, one can define many types of special subsets based on the given order. A simple example are upper sets; i.e. sets that contain all elements that are above them in the order. Formally, the upper closure of a set S in a poset P is given by the set {x in P | there is some y in S with yx}. A set that is equal to its upper closure is called an upper set. Lower sets are defined dually.

More complicated lower subsets are ideals, which have the additional property that each two of their elements have an upper bound within the ideal. Their duals are given by filters. A related concept is that of a directed subset, which like an ideal contains upper bounds of finite subsets, but does not have to be a lower set. Furthermore it is often generalized to preordered sets.

A subset which is - as a sub-poset - linearly ordered, is called a chain. The opposite notion, the antichain, is a subset that contains no two comparable elements; i.e. that is a discrete order.

Read more about this topic:  Order Theory

Famous quotes containing the words ordered and/or sets:

    Then he rang the bell and ordered a ham sandwich. When the maid placed the plate on the table, he deliberately looked away but as soon as the door had shut, he grabbed the sandwich with both hands, immediately soiled his fingers and chin with the hanging margin of fat and, grunting greedily, began to much.
    Vladimir Nabokov (1899–1977)

    Certain anthropologists hold that man, having discovered tools, ceased to evolve biologically. Animals, never having discovered them, continue to fashion drills out of their beaks, oars out of their hind feet, wings out of their forefeet, suits of armor out of their hides, levers out of their horns, saws out of their teeth. Whether this be true or not, all authorities agree that man is the tool-using animal. It sets him off from the rest of the animal kingdom as drastically as does speech.
    Stuart Chase (1888–1985)