Definition
A random vector x = (X1, …, Xk)' is said to have the multivariate normal distribution if it satisfies the following equivalent conditions.
- Every linear combination of its components Y = a1X1 + … + akXk is normally distributed. That is, for any constant vector a ∈ Rk, the random variable Y = a′x has a univariate normal distribution.
- There exists a random ℓ-vector z, whose components are independent standard normal random variables, a k-vector μ, and a k×ℓ matrix A, such that x = Az + μ. Here ℓ is the rank of the covariance matrix Σ = AA′. Especially in the case of full rank, see the section below on Geometric interpretation.
- There is a k-vector μ and a symmetric, nonnegative-definite k×k matrix Σ, such that the characteristic function of x is
The covariance matrix is allowed to be singular (in which case the corresponding distribution has no density). This case arises frequently in statistics; for example, in the distribution of the vector of residuals in the ordinary least squares regression. Note also that the Xi are in general not independent; they can be seen as the result of applying the matrix A to a collection of independent Gaussian variables z.
Read more about this topic: Multivariate Normal Distribution
Famous quotes containing the word definition:
“One definition of man is an intelligence served by organs.”
—Ralph Waldo Emerson (18031882)
“Mothers often are too easily intimidated by their childrens negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.”
—Elaine Heffner (20th century)
“Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.”
—Nadine Gordimer (b. 1923)