Multiplicative Group - Group Scheme of Roots of Unity

Group Scheme of Roots of Unity

The group scheme of -th roots of unity is by definition the kernel of the -power map on the multiplicative group, considered as a group scheme. That is, for any integer we can consider the morphism on the multiplicative group that takes -th powers, and take an appropriate fiber product in the sense of scheme theory of it, with the morphism that serves as the identity.

The resulting group scheme is written . It gives rise to a reduced scheme, when we take it over a field, if and only if the characteristic of does not divide . This makes it a source of some key examples of non-reduced schemes (schemes with nilpotent elements in their structure sheaves); for example over a finite field with elements for any prime number .

This phenomenon is not easily expressed in the classical language of algebraic geometry. It turns out to be of major importance, for example, in expressing the duality theory of abelian varieties in characteristic (theory of Pierre Cartier). The Galois cohomology of this group scheme is a way of expressing Kummer theory.

Read more about this topic:  Multiplicative Group

Famous quotes containing the words group, scheme, roots and/or unity:

    We begin with friendships, and all our youth is a reconnoitering and recruiting of the holy fraternity they shall combine for the salvation of men. But so the remoter stars seem a nebula of united light, yet there is no group which a telescope will not resolve; and the dearest friends are separated by impassable gulfs.
    Ralph Waldo Emerson (1803–1882)

    The real security of Christianity is to be found in its benevolent morality, in its exquisite adaptation to the human heart, in the facility with which its scheme accommodates itself to the capacity of every human intellect, in the consolation which it bears to the house of mourning, in the light with which it brightens the great mystery of the grave.
    Thomas Babington Macaulay (1800–1859)

    “Jim,” she said earnestly, “if I was put down there in the middle of the night, I could find my way all over that little town; and along the river to the next town, where my grandmother lived. My feet remember all the little paths through the woods, and where the big roots stick out to trip you. I ain’t never forgot my own country.”
    Willa Cather (1873–1947)

    From cradle to grave this problem of running order through chaos, direction through space, discipline through freedom, unity through multiplicity, has always been, and must always be, the task of education, as it is the moral of religion, philosophy, science, art, politics and economy; but a boy’s will is his life, and he dies when it is broken, as the colt dies in harness, taking a new nature in becoming tame.
    Henry Brooks Adams (1838–1918)