Multiplicative Group - Group Scheme of Roots of Unity

Group Scheme of Roots of Unity

The group scheme of -th roots of unity is by definition the kernel of the -power map on the multiplicative group, considered as a group scheme. That is, for any integer we can consider the morphism on the multiplicative group that takes -th powers, and take an appropriate fiber product in the sense of scheme theory of it, with the morphism that serves as the identity.

The resulting group scheme is written . It gives rise to a reduced scheme, when we take it over a field, if and only if the characteristic of does not divide . This makes it a source of some key examples of non-reduced schemes (schemes with nilpotent elements in their structure sheaves); for example over a finite field with elements for any prime number .

This phenomenon is not easily expressed in the classical language of algebraic geometry. It turns out to be of major importance, for example, in expressing the duality theory of abelian varieties in characteristic (theory of Pierre Cartier). The Galois cohomology of this group scheme is a way of expressing Kummer theory.

Read more about this topic:  Multiplicative Group

Famous quotes containing the words group, scheme, roots and/or unity:

    The boys think they can all be athletes, and the girls think they can all be singers. That’s the way to fame and success. ...as a group blacks must give up their illusions.
    Kristin Hunter (b. 1931)

    Television programming for children need not be saccharine or insipid in order to give to violence its proper balance in the scheme of things.... But as an endless diet for the sake of excitement and sensation in stories whose plots are vehicles for killing and torture and little more, it is not healthy for young children. Unfamiliar as yet with the full story of human response, they are being misled when they are offered perversion before they have fully learned what is sound.
    Dorothy H. Cohen (20th century)

    There is nothing but is related to us, nothing that does not interest us,—kingdom, college, tree, horse, or iron show,—the roots of all things are in man.
    Ralph Waldo Emerson (1803–1882)

    Art expresses the one, or the same by the different. Thought seeks to know unity in unity; poetry to show it by variety; that is, always by an object or symbol.
    Ralph Waldo Emerson (1803–1882)