In mathematics, a group scheme is a type of algebro-geometric object equipped with a composition law. Group schemes arise naturally as symmetries of schemes, and they generalize algebraic groups, in the sense that all algebraic groups have group scheme structure, but group schemes are not necessarily connected, smooth, or defined over a field. This extra generality allows one to study richer infinitesimal structures, and this can help one to understand and answer questions of arithmetic significance. The category of group schemes is somewhat better behaved than that of group varieties, since all homomorphisms have kernels, and there is a well-behaved deformation theory. Group schemes that are not algebraic groups play a significant role in arithmetic geometry and algebraic topology, since they come up in contexts of Galois representations and moduli problems. The initial development of the theory of group schemes was due to Alexandre Grothendieck, Michel Raynaud, and Michel Demazure in the early 1960s.
Read more about Group Scheme: Definition, Constructions, Examples, Basic Properties, Finite Flat Group Schemes, Cartier Duality, Dieudonné Modules
Famous quotes containing the words group and/or scheme:
“Once it was a boat, quite wooden
and with no business, no salt water under it
and in need of some paint. It was no more
than a group of boards. But you hoisted her, rigged her.
Shes been elected.”
—Anne Sexton (19281974)
“The real security of Christianity is to be found in its benevolent morality, in its exquisite adaptation to the human heart, in the facility with which its scheme accommodates itself to the capacity of every human intellect, in the consolation which it bears to the house of mourning, in the light with which it brightens the great mystery of the grave.”
—Thomas Babington Macaulay (18001859)