Multiplicative Group

In mathematics and group theory the term multiplicative group refers to one of the following concepts, depending on the context

  • any group whose binary operation is written in multiplicative notation (instead of being written in additive notation as usual for abelian groups),
  • the underlying group under multiplication of the invertible elements of a field, ring, or other structure having multiplication as one of its operations. In the case of a field F, the group is {F - {0}, •}, where 0 refers to the zero element of the F and the binary operation • is the field multiplication,
  • the algebraic torus .

Read more about Multiplicative Group:  Group Scheme of Roots of Unity

Famous quotes containing the word group:

    It is not God that is worshipped but the group or authority that claims to speak in His name. Sin becomes disobedience to authority not violation of integrity.
    Sarvepalli, Sir Radhakrishnan (1888–1975)